GIẢI BÀI TẬP HÌNH HỌC 10

Cho ba vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\) đều khác vec tơ \(\overrightarrow{0}\). Các khẳng định sau đây đúng hay sai?

a) Nếu hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương với \(\overrightarrow{c}\) thì \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương.

Bạn đang xem: Giải bài tập hình học 10

b) Nếu \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng ngược hướng với \(\overrightarrow{c}\) thì \(\overrightarrow{a}\) và \(\overrightarrow{b}\) cùng hướng .

Giải

a) Gọi theo thứ tự \({\Delta _1},{\Delta _2},{\Delta _3}\) là giá của các vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\), \(\overrightarrow{c}\)

\(\overrightarrow{a}\) cùng phương với \(\overrightarrow{c}\) \( \Rightarrow {\Delta _1}//{\Delta _3}\) ( hoặc \({\Delta _1} \equiv {\Delta _3}\)) (1)

\(\overrightarrow{b}\) cùng phương với \(\overrightarrow{c}\) \(\Rightarrow {\Delta _2}//{\Delta _3}\) ( hoặc \({\Delta _2} \equiv {\Delta _3}\) ) (2)

Từ (1), (2) suy ra \({\Delta _1}//{\Delta _2}\) ( hoặc \({\Delta _1} \equiv {\Delta _2}\) ), theo định nghĩa hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\) cùng phương.

Vậy câu a) đúng.

b) Đúng.

 

Bài 2 trang 7 sgk hình học lớp 10

Trong hình 1.4, hãy chỉ ra các vec tơ cùng phương, cùng hướng, ngược hướng và các vectơ bằng nhau.

*

Giải

- Các vectơ cùng phương: \(\overrightarrow{a}\) và \(\overrightarrow{b}\); \(\overrightarrow{x}\), \(\overrightarrow{y}\), \(\overrightarrow{z}\) và \(\overrightarrow{w}\); \(\overrightarrow{u}\) và \(\overrightarrow{v}\).

- Các vectơ cùng hướng: \(\overrightarrow{a}\) và \(\overrightarrow{b}\); \(\overrightarrow{x}\), \(\overrightarrow{y}\), \(\overrightarrow{z}\)

- Các vectơ ngược hướng: \(\overrightarrow{u}\) và \(\overrightarrow{v}\); \(\overrightarrow{z}\) và \(\overrightarrow{w}\); \(\overrightarrow{y}\) và \(\overrightarrow{w}\); \(\overrightarrow{x}\) và \(\overrightarrow{w}\).

Xem thêm: Top 15 Máy Pha Cafe Cho Quán Nhỏ Tốt, Chi Phí Hợp Lý? Top 15 Máy Pha Cà Phê Cho Quán Vừa Và Nhỏ

- Các vectơ bằng nhau: \(\overrightarrow{x}\) = \(\overrightarrow{y}\).

 

Bài 3 trang 7 sgk hình học lớp 10

Cho tứ giác \(ABCD\). Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi \(\overrightarrow{AB}\) = \(\overrightarrow{DC}\).

Giải

Ta chứng minh hai mệnh đề:

*) Khi \(\overrightarrow{AB}\) = \(\overrightarrow{DC}\) thì \(ABCD\) là hình bình hành.

Thật vậy, theo định nghĩa của vec tơ bằng nhau thì:

\(\overrightarrow{AB}\) = \(\overrightarrow{DC}\) ⇔ \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{DC} \right |\) và \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng.

 \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng suy ra \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng phương, suy ra giá của chúng song song với nhau,

hay \(AB // DC\) (1)

Ta lại có \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{DC} \right |\) suy ra \(AB = DC\) (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác \(ABCD\) có một cặp cạnh song song và bằng nhau nên nó là hình bình hành. 

*) Khi \(ABCD\) là hình bình hành thì \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\)

Khi \(ABCD\) là hình bình hành thì \(AB // CD\). Dễ thấy, từ đây ta suy ra hai vec tơ \(\overrightarrow{AB}\) và \(\overrightarrow{CD}\) cùng hướng (3)

Mặt khác \(AB = CD\) suy ra \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{CD} \right |\) (4)

Từ (3) và (4) suy ra \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\).

 

Bài 4 trang 7 sgk hình học lớp 10

Cho lục giác đều \(ABCDEF\) có tâm \(O\).

a) Tìm các vec to khác \(\overrightarrow{0}\)và cùng phương với \(\overrightarrow{OA}\)

b) Tìm các véc tơ bằng véc tơ \(\overrightarrow{AB}\)

Giải

*

a) Các vec tơ cùng phương với vec tơ \(\overrightarrow{OA}\):

\(\overrightarrow{BC}\); \(\overrightarrow{CB}\); \(\overrightarrow{EF}\); \(\overrightarrow{DO}\); \(\overrightarrow{OD}\); \(\overrightarrow{DA}\); \(\overrightarrow{AD}\); \(\overrightarrow{FE}\) và \(\overrightarrow{AO}\).

b) Các véc tơ bằng véc tơ \(\overrightarrow{AB}\): \(\overrightarrow{ED}\); \(\overrightarrow{FO}\); \(\overrightarrow{OC}\).

Leave a Reply

Your email address will not be published. Required fields are marked *

  • App xóa nhăn quần áo

  • Gái tây ở hồ chí minh

  • Gái goi vinh nghe an

  • Vé concert bts giá bao nhiều tiền việt nam

  • x

    Welcome Back!

    Login to your account below

    Retrieve your password

    Please enter your username or email address to reset your password.